sábado, 7 de agosto de 2010

data mining

Etapas principales del proceso de data mining
 1. Determinación de los objetivos: delimitar los objetivos que el cliente desea bajo la orientación del especialista en data mining.
 2. Preprocesamiento de los datos: se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining.
 3. Determinación del modelo: se comienza realizando un análisis estadístico de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial.
 4. Análisis de los resultados: verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por el análisis estadístico y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones.
Respecto a los modelos inteligentes, se ha comprobado que en ellos se utilizan principalmente árboles y reglas de decisión, reglas de asociación, redes neuronales, redes Bayesianas, conjuntos aproximados (rough sets), algoritmos de agrupación (clustering), máquinas de soporte vectorial, algoritmos genéticos y lógica difusa.  

                                                                                                     
Extensiones del data mining



Web mining: consiste en aplicar las técnicas de minería de datos a documentos y servicios del Web (Kosala y otros, 2000). Todos los que visitan un sitio en Internet dejan huellas digitales (direcciones de IP, navegador, etc.) que los servidores automáticamente almacenan en una bitácora de accesos (Log). Las herramientas de Web mining analizan y procesan estos logs para producir información significativa. Debido a que los contenidos de Internet consisten en varios tipos de datos, como texto, imagen, vídeo, metadatos o hiperligas, investigaciones recientes usan el término multimedia data mining (minería de datos multimedia) como una instancia del Web mining (Zaiane y otros, 1998) para tratar ese tipo de datos. Los accesos totales por dominio, horarios de accesos más frecuentes y visitas por día, entre otros datos, son registrados por herramientas estadísticas que complementan todo el proceso de análisis del Web mining.   
Text mining:  dado que el ochenta por ciento de la información de una compañía está almacenada en forma de documentos, las técnicas como la categorización de texto, el procesamiento de lenguaje natural, la extracción y recuperación de la información o el aprendizaje automático, entre otras, apoyan al text mining (minería de texto). En ocasiones se confunde el text mining con la recuperación de la información (Information Retrieval o IR) (Hearst, 1999). Esta última consiste en la recuperación automática de documentos relevantes mediante indexaciones de textos, clasificación, categorización, etc. Generalmente se utilizan palabras clave para encontrar una página relevante. En cambio, el text mining se refiere a examinar una colección de documentos y descubrir información no contenida en ningún documento individual de la colección; en otras palabras, trata de obtener información sin haber partido de algo (Nasukawa y otros, 2001).

                                                                                                                

 

¿Por qué usar data mining?
Si bien el data mining se presenta como una tecnología emergente, posee ciertas ventajas, como ser:
 resulta un buen punto de encuentro entre los investigadores y las personas de negocios.
 ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios.
 trabajar con esta tecnología implica cuidar un sin número de detalles debido a que el producto final involucra "toma de decisiones".
 contribuye a la toma de decisiones tácticas y estratégicas proporcionando un sentido automatizado para identificar información clave desde volúmenes de datos generados por procesos tradicionales y de e-Business.
 permite a los usuarios dar prioridad a decisiones y acciones mostrando factores que tienen un mayor en un objetivo, qué segmentos de clientes son desechables y qué unidades de negocio son sobrepasados y por qué.
 proporciona poderes de decisión a los usuarios del negocio que mejor entienden el problema y el entorno y es capaz de medir la acciones y los resultados de la mejor forma.
 genera Modelos descriptivos: en un contexto de objetivos definidos en los negocios permite a empresas, sin tener en cuenta la industria o el tamaño, explorar automáticamente, visualizar y comprender los datos e identificar patrones, relaciones y dependencias que impactan en los resultados finales de la cuenta de resultados (tales como el aumento de los ingresos, incremento de los beneficios, contención de costes y gestión de riesgos).
 genera Modelos predictivos: permite que relaciones no descubiertas e identificadas a través del proceso del Data Mining sean expresadas como reglas de negocio o modelos predictivos. Estos outputs pueden comunicarse en formatos tradicionales (presentaciones, informes, información electrónica compartida, embebidos en aplicaciones, etc.) para guiar la estrategia y planificación de la empresa. 

No hay comentarios:

Publicar un comentario